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The effect of the linear Q on the decay of a spherical shock wave in a solid, as cal- 
culated by Lagrangian finite difference techniques, is determined by a study of the 
partial differential equations approximated by the difference equations. It is shown that 
the computed solutions approach an asymptotic form determined by the linear Q terms, 
and the decay law imposed by the linear Q is given. Finally, it is suggested that the 
physics of the weak decaying shock problem indicate that the numerical linear Q needs 
to be replaced by terms modeling a true physical damping mechanism. 

INTRODUCTION 

A computational physics problem in explosion technology is the accurate 
calculation of a decaying spherical shock wave in a solid. A particular example 
currently under investigation is the accurate calculation of surface spallation 
resulting from the detonation of a contained nuclear explosion. The velocity of  the 
spall is twice the particle velocity of  the incident shock wave, hence the deter- 
mination of  spall velocity depends on accurate calculation of particle velocity. 
In addition to military applications, accurate calculation of  decaying shocks in 
solids is necessary for such technologies as the nuclear explosion stimulation of gas 
and oil wells. 

A characteristic of  an explosion contained by a solid, almost always the earth, 
is that  the pressure and particle velocity decays rapidly with increased distance 
f rom the detonation point. Thus, not far f rom the explosion, the material response 
of  the medium is nearly linear in the sense that  the convective terms in the Eulerian 
description of momentum conservation are small compared with the pressure 
terms. Blast waves that satisfy this condition are called weak decaying shocks in 
the remainder of  the paper. 

Computer  programs, based on finite difference approximations to the differential 
equations of  motion, have been used to calculate shock waves in solids [1-4]. These 
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programs integrate the following Lagrangian equations of motion in two spatial 
dimensions with axial symmetry: 

Ou 1 OP 1 OrRz 1 OrR 2rR + "rz 
8-7 = t' OR + p O---f + -p -UR + p R + G ~ (1) 

_ _ _ _  O ~ ' R z  O ~ ' z  Ov 1 OP + 1 _ _  1 ~'Rz 
8-7 = p e z  p e R  + ~ - ~ -  + ~k- + ~z (2) 

0~'R= 2/-~ (2 0u 0v u )  
St 3 OR 0Z R (3) 

a r z =  2/L (2 0v Ou u )  
0t 3 0Z 0R R (4) 

O~ RZ O(~z_ Z ev ) 
St = ~ + ~ (5) 

OR 
0--7 = u (6) 

bZ 
bt = v. (7) 

Here R is the radial coordinate, Z is the axial coordinate, u is the radial component 
of velocity, v is the axial component of velocity, t is the time, p is the density, 
P is the pressure, GR and Gz are the components of gravitational acceleration, 
~'R, ~z and rRZ are the deviatoric stresses, and/z is the shear modulus. The equation 
of state is usually in the form: 

P = f (O) ,  0 = p -- 1. (8) 
P0 

The density of a zone in the finite-difference approximation is determined by 
dividing the mass of the Lagrangian zone (which remains constant throughout the 
calculations) by the volume of the zone, which in turn, is calculated from the 
coordinates of the mesh points defining the zone at the current time. Yield and 
failure are incorporated by altering the stresses ~'R, r z ,  rRz at each time step of 
the integration according to a prescription based on the current state of stress. 
In the case of elastic behavior, the stresses are left unaltered and the pressure is 
computed from 

P = kO, (9) 

where k is the bulk modulus. 
The computer programs for solving these equations, such as the TENSOR 

program [1, 2] and the HEMP program [3, 4], rely on different finite-difference 
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approximations to the above partial differential equations. However, they have one 
feature common to all elastic-plastic Lagrangian difference codes: the substitution 
of P + Q for P where Q is the "pseudo-viscosity" introduced by Von Neumann 
(see Richtmyer [5]). The purpose of Q is to provide a mechanism by which kinetic 
energy can be converted to internal energy as the material is shocked. In the case of 
motion in one spatial dimension, the quadratic Q is intended for very strong shock 
waves and has the form l oo( x)  on 

Q _- \--~-x] -~ -  < 0 
~u (lo) 

8x ~ O, 

where p is the density, Co is a constant of  the order of one, and Ax is the size of the 
spatial difference interval. 

As noted earlier, the spherical shock wave from an explosion in a solid decays 
rapidly with distance. As a result, one quickly reaches a range at which quadratic, 
or second order, terms become small compared with the first order terms in the 
difference equations of  motion. To counteract this, investigators have added linear 
or first order terms to the expression for Q. There have been many formulations 
of  Q but a fairly typical example in one spatial dimension is 

(~u~2_ Clpo~dX (~x) 8u C~ \8~x ! ~xx < 0 
Q = Ou ~u (11) 

Ax , ) ~--~ > 0 ,  

where (71 is a constant, ~ is the compressional sound velocity, and Ax is the mesh 
width. As the wave decays, the linear terms in this Q remain comparable to the 
other terms in the equations of motion and continue to perform the function of 
converting the kinetic energy of oscillation between neighboring mesh points into 
internal energy. 

In fact, the inclusion of linear Q terms amounts to adding dissipation terms to the 
basic differential equations. If  one defines the viscosity coefficient ~ ~ CIp~ Ax 
and takes the limit At--+O, AR---~O, AZ--~O while holding ~/ constant, the 
difference equations approach the differential equations for the Voigt-Kelvin 
model of a viscoelastic solid. In practice, one almost always operates with a value 
of C~ such that ~ is large enough that the Q terms dominate any of the truncation 
effects arising from the difference approximation to the other terms in the differ- 
ential equations. For  this reason, the solutions obtained from the difference 
equations approach very closely the solutions one obtains for the differential 
equations with dissipation terms added. 
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The intent of this paper is to provide a quantitative understanding of the effect 
of the linear Q upon the attenuation of a weak spherical shock. Because the 
phenomena is so nearly linear, except in the immediate neighborhood of the 
explosion, it is easier to attack the problem at the level of the partial differential 
equations rather than that of the difference equations. The specific Q investigated 
is used in a version of the TENSOR program [1, 2]. The critical role Q plays in 
determining the pulse shape and particle velocity in a weak spherical shock will be 
demonstrated, and it will be shown that the presence of a linear Q implies an 
inverse three-halves power decay law. 

ASYMPTOTIC SOLUTION FOR THE SPHERICAL SHOCK WITH LINEAR Q 

With the tensor version of the linear Q used in the program, the differential 
equations are 

On 

~t 

and 

1 O(P+ Q - z ~ - Q ~ )  + I ~ ( r R z + Q R z ) + 2 ~ R + Z z + 2 Q R + Q z  
p OR p OZ oR (12) 

Ov 1 8(P + Q - z z  - Qz) 1 O(Tez q- QRZ) + ZRz + QRz (13) 
o--i = p oz  + ~ oR oR ' 

where rR, rz ,  and ~Rz are the deviatoric stresses and the Q, OR, Qz,  and QRz 
are given by 

_ ~ (  ~u ~v u )  (14) 
Q~ = 2 OR OZ _ R '  

2_~ ( ev ~u u )  (15) 
Qz = 2 ~Z 8R R ' 

Q.z = ~/(~--~ + ~-~R), (16) 

( 1 (17) 
Q = - A  - ~ - - + R  OR ; 

~q = Gpo~ ~Ax), (18) 

A = C~po~ (Ax).  (19) 

Here ( d x )  is the characteristic mesh length and C1 is an input constant. In a 
two-dimensional calculation (Ax)  is determined from a weighted average of the 
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distances between the mesh points defining a zone. In one-dimensional calculations 
( d x )  is just the width of a zone. Although ~ and ~ are numerical and not physical 
quantities, the notation denoting shear viscosity and bulk viscosity has been used 
to emphasize the equivalance of the linear Q formulation to the Voigt-Kelvin 
model of a viscoelastic solid. 

The deviatoric stresses are determined by the original Eqs. (3-5). With the 
assumption of small displacements, the spatial differentials with respect to the 
Lagrangian coordinates may be replaced by spatial differentials with respect to 
Eulerian coordinates. Substitution of Eqs. (6 and 7) into Eqs. (3-5, 14-16, and 17) 
and, in turn, substitution of these equations and Eq. (9) into Eqs. (12 and 13) 
results in a pair of linear partial differential equations for the Lagrangian dis- 
placements A R  and A Z .  In the theory of elasticity it is shown that the elastic 
displacement equations can be further simplified by the introduction of scalar and 
vector potentials. In the case of spherical symmetry the vector potential is zero and 
one need only solve for the scalar displacement potential given by 

The radial displacement is then given by 

A R = ad? 
a r  " 

The velocity potential is given by 

r  ar 
at ' 

(21) 

(22) 

so that the particle velocity is given by 

~r~t " 
(23) 

In deriving the basic differential equation corresponding to the spherical shock 
problem with the linear Q, I have taken the coefficients ~ and A to be constants 
while, in fact, they usually have some spatial variation as a result of variations in 
the mesh width, density, and sound speed. Furthermore, I have used a linear Q 
that is effective in both compression and expansion regions; in many formulations 
the linear Q is set to zero in expansion regions. The version of the TENSOR 
program used has constant input values for ~ and A and leaves the linear Q on in 
expansion regions so that all of the requirements for the analytic solution are 
strictly satisfied. 
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The driving mechanism that approximates the explosion closely at early times 
is that of  a small cavity expanding at constant velocity. This boundary condition is 
satisfied if the solution approaches the form 

= ~ o t  ( 2 4 )  
r 

in the neighborhood of the origin. To solve for the asymptotic form of the decaying 
spherical shock with linear Q, put ~ = A/r and substitute into Eq. (18) to get 

where 

and 

~2A ~2 c3~A eaA (25) 
c~t- ~ = ~ + v &~c~------/- ' 

~2 = ~ ( 2 6 )  
P 

A + ] n  
v -- ~ (27) 

P 

Taking the Laplace transform H of A with respect to time gives 

s2H - -  s A ( O )  - -  A(o) = ~ ~2H ~2 + v ~ {sH -- A(O)}. (28) 

Since the material is initially at rest, A and A are identically zero, thus 

d ~H ( s2 ) 
dr 2 ~2 _q_ v s  H : 0. (29) 

The solution, which decays to zero as r ~ 0% is 

H(r, s) = A(s) exp{--rs(~ 2 q- us)-1~2}. (30) 

The Laplace transform of  the boundary condition at r = 0 is 

L{,~ot) = ~oS -~. (31) 

Therefore, the transform of  the solution is 

H(r, s) = ~0 s-2 exp{--rs(~ ~ -}- vs)-l/~}. (32) 
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Taking the time derivative of  the solution corresponds to multiplying the 
transform of  the solution by s, since A(+O) = O, therefore the transform of A is 

F(r ,  s)  = d?os -1 exp{--rs(~ ~ -+- vs)- l /2} .  (33) 

The inversion may be performed easily when 

~>~1, 

corresponding to the asymptotic limit to give the velocity potential 

4o [1 -q- erf(~- V~)],  crp(r, t )  = A / r  = (34) 

where 

c~t 
T = - - -  1 (35) 

r 

and 

- - ~  ~r = 2v (36) 

Therefore the solution for the particle velocity is 

 011 + erf(, + + exp(-o,'  l u = ~r-f 

DISCUSSION OF RESULTS 

The analytic solution has been evaluated for a particular case and the 
results are plotted as small circles in Fig. 1. The parameters for this case are 
~b 0 = 1.6 • 108cm 8sec -1, v = 7.5 • 107cm ~sec -1, ~ = 2 . 3 k m s e c  -1, and 
t = 0.35 sec. Figure 1 also includes the results for a TENSOR calculation of the 
same problem. These are plotted as small crosses. The elastic constants enter into 
the analytic solution only by way of the compressional sound velocity, thus there 
are two additional variables in the finite-difference problem. These are the density 
and Poisson's ratio, which I chose to be 2.0 g cm -3 and 1/3, respectively. The 
choice is arbitrary, since once these two variables are fixed, the bulk modulus and 
shear modulus are determined by the sound velocity. 
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FIG. 1. Shock particle velocity plotted as a function of range. The small circles are points 
evaluated from the analytic solution. The crosses are points obtained from a finite-difference 
solution. The time is 0.35 sec. 

Spherical symmetry was simulated in the numerical problem by choosing a 
wedge-shaped mesh with one edge along the z axis of  axial symmetry and the 
other edge at an angle of  10 deg from the z axis. The wedge began at an inner 
radius of  20 m and extended out to 1150 m. The analytic result is the asymptotic 
solution for a cavity expanding at constant velocity. Thus it is necessary to start 
the numerical calculation with a cavity small enough to ensure that the asymptotic 
state is reached before comparing results. Furthermore, the cavity must not be 
driven with too large a velocity, else the linearity assumption would be violated. 
These precautions must be taken to guarantee that the source function in the 
numerical problem is well defined in terms of the source in the analytical solution. 

It should be emphasized that the asymptotic state is eventually reached whether 
or not the linearity assumption is violated in the neighborhood of the cavity. For 
a nonlinear source, there is always some particular amplitude for the linear source 
that produces the same asymptotic state as the original nonlinear source. The 
precautions mentioned ensure that the numerical problem starts with the equivalent 
linear source amplitude known beforehand. The cavity velocity corresponding to 
the value of 40 in the analytical solution is 40.0 cm sec -x. That value satisfies the 
analytical boundary condition given by Eq. (24) for an initial cavity radius of 
20.0 m. 

The numerical calculation was done on a mesh containing 140 radial zones. The 
zoning was not uniform so as to permit relatively fine zoning next to the cavity. 
This is necessary to get a good approximation to the analytical source at zero 
radius. The slight amplitude discrepancy observed in Fig. 1 is the result of  this 
approximation. This was confirmed by making several runs, each with a smaller 
driving cavity and finer zoning. The amplitude of the numerical solution was 
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observed to converge to the analytical result as the resolution in the cavity region 
increased. The zone size at the cavity for the run in Fig. 1 was 2.0 m. The zone 
size increased gradually to 15.0 m at a radius of  550.0 m. Beyond this radius the 
zone size remained constant at 15.0 m. 

By referring to Eqs. (18), (19), and (27) one can see that beyond 550 m the zone 
size and the parameters v and ~ are equivalent to a linear Q coefficient of 0.1, 
which is the value normally used in TENSOR calculations. The fact that the 
computer solution continues to agree with the analytical solution beyond 550 m 
supports the contention that the linear Q, as actually used in practical calculations, 
dominates truncation effects arising from other terms in the equations. To check 
this, the free surface was moved out to 2000 m (with the same 15.0 m zone size) 
and the calculation continued until the pulse reached 1500 m. At the greater range, 
the pulse approaches a symmetrical Gaussian form, similar to the example shown 
in Fig. 2, but the close agreement between computer and analytical solutions is 
maintained. 
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FIG. 2. Normalized shock particle velocity plotted as a function of range. The small circles 
are points evaluated from the analytic solution. The crosses are points obtained from the finite- 
difference solution. The time is 0.375 sec. 

An indication of how closely an actual explosion calculation approaches the 
asymptotic form imposed by the linear Q is given by the particle velocity plot in 
Fig. 2. The TENSOR finite-difference results are indicated by the small crosses 
and the asymptotic solution by the small circles. The numerical calculation simu- 
lated the explosion of a 25.0 kton explosion in the earth at a depth of  1280 m. The 
source was a spherical cavity, initially with a radius of  5.0 m, containing vaporized 
rock at a pressure of 1.74 mbar. The gas expanded adiabatically, forcing the wails 
of  the cavity out to a radius of  approximately 30 m. The containing rock was 
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programmed to have a shear strength of only a few kilobars, hence severe plastic 
flow occurred. In addition, the numerical simulation included overburden and 
several different layers of earth and rock materials, so that the portion of  the shock 
propagating vertically passed through a density and strain energy gradient. It is 
not necessary to go further into the details of  the numerical run except to note that 
the average values of  ~ and v were 3.12 x 105 cm sec -~ and 1.85 • 107 cm ~ see -~, 
respectively. These values were used in evaluating the analytical solution. The plot 
shown in Fig. 2 was taken along a radius, which extended vertically to the surface, 
located at 1280 m. The failure of  the numerical solution to go to zero on the 
leading side of  the pulse is explained by the fact that the shock is just beginning 
to strike the surface. Despite all of  the nonlinearities, and inelastic behavior in the 
source region the resulting blast wave is in close agreement with the predictions of  
the asymptotic linear theory. 

The development and discussion has been based on a formulation of the linear Q 
which is active in both compression and expansion zones, however many investi- 
gators simply turn the linear Q off in expansion regions maintaining that there 
should not be a dissipative mechanism there. An analytical solution for this type 
of linear Q might be derivable by perturbation methods, but I was not able to do it. 
To examine this case, the first problem (the run shown in Fig. 1) was rerun with 
the Q terms set to zero in expansion regions. Figure 3 is a duplicate of Fig. 1 with 
the addition of  the run with the Q turned off in expansion. It can be seen that this 
run is the same as the first except in the expansion region where the removal of the 
linear Q has introduced an oscillatory perturbation. The decay rate for the run 
with the Q turned offin expansion was observed to follow an inverse 1.5 power law. 
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The intent of this work has been to gain a theoretical understanding of the linear 
Q and its effect on a weak blast pulse in a solid. The originators of the quadratic Q 
intended it to be a convenient computational device for including strong shock 
discontinuities in invicid gas dynamic calculations. Since the physical model 
assumed invicid flow it was natural to suppress viscosity effects everywhere except 
at a shock. One of the main reasons for the subsequent development of the linear Q 
is the fact that unless some kind of linear damping is included in the calculation 
of weak decaying waves the solutions quickly become obscured in a hashwork of 
short wavelength noise. The idea that viscosity must be suppressed except at the 
shock front has persisted through the development of the linear Q, first in 
applications to gases and then finally to solids. 

The underlying physics of weak decaying shocks in solids, and gases also, is 
different from that of high-pressure, high-speed gas dynamics. In the latter case 
viscous effects can usually be ignored except in shocks or thin boundary layers. 
In the former case, at some point in the decay of the shock pulse, the physical 
attenuation mechanisms come to have a dominant effect on the pulse form and 
decay rate. A comprehensive discussion of the shock decay process is given by 
Lighthill [6]. The shock transition region thickens until there is no recognizable 
shock, just a smoothly varying attenuated sound pulse. In solids and earth 
materials this point may be very near the site of the explosion. For example, the 
shock fronts from large nuclear explosions in Nevada Tufts (a kind of compacted 
partially fused volcanic ash) are spread over as much as several hundred meters by 
the time the front has traveled a kilometer. It is at this finite-amplitude sound wave 
stage that numerical noise becomes a problem unless suppressed by some kind of 
linear damping mechanism. 

In practice the solid mechanics programs cannot compute purely elastic response 
because the calculations must always be made with a finite number of zones. 
In the case of decaying explosion waves what they do calculate is the response for 
a type of Voigt solid, but with viscosity coefficients that depend on purely numerical 
parameters. The fact that some type of viscosity is required for an adequate 
physical model of decaying shocks suggests that the use of the linear Q could be 
made more rational. This could be done by making it correspond exactly to some 
physical model of damping, rather than have it depend on zone size and shape, 
and whether or not the zone is in expansion or compression. The easiest thing to do 
is to make the linear Q correspond exactly to the Voigt model by keeping the Q 
on in both compression and expansion and by making the coefficients ~1 and A in 
Eqs. (14-17) input viscosities. 

It is evident from the preceeding results that the amplitude and shape of the blast 
pulse are strongly influenced by a linear Q, so that the spall velocity is also strongly 
affected. It is, therefore, useless to attempt to calculate spall velocities in weak 
decaying shock problems without first replacing the linear Q by some physical 
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model of damping such as the Voigt model. While the Voigt model may not be 
the best physical model, it is at least free from arbitrary numerical parameters 
such as zone size and shape. Furthermore, with the Voigt model one can show that 
a fundamental quantity, the integrated momentum per unit surface area of the 
pulse, is independent of the viscosity coefficients. Integrating Eq. (37) in the limit 
of large radius 

M ~ 4Or f~_o~ ~/@ e-"~2dr = pcfi-~~ (38) 

This is an important quantity because it can be measured experimentally and 
because it is the impulse that can be delivered by the blast pulse if it is absorbed 
inelastically. In the case of an underground explosion, the surface spall acts as the 
absorber, carrying most of the momentum of the blast pulse with it as it flies up 
from the surface. The significance of the result in Eq. (38) is that one can expect to 
calculate the impulse delivered by the blast wave correctly independent of the 
viscosity coefficients. Although it may not be possible to calculate the spall velocity 
correctly because realistic viscosity coefficients are not known or because they must 
be made abnormally large for numerical smoothing, it should still be possible to 
correctly calculate the impulse delivered by the blast wave. 

Knowledge of the decay law imposed by the damping mechanism is also useful. 
The decay law for the Voigt model obtained from Eq. (37) is 

U ~' Cll/~r -a/2. (39) 

This result can be used to infer the decay rate for other types of physical damping 
mechanisms that may be added to the model. For example, the adiabat and 
Hugoniot are usually represented by the single curve, Eq. (8), in calculations 
because physically they are practically identical for many solids not shocked 
above the melting point. However, some earth materials exhibit porosity, so that 
after shocking, the material follows a different adiabat lying below the adiabat 
for the unshocked material. As a result the shock pulse undergoes as additional 
attenuation in traversing the material, and the decay law follows a higher inverse 
power than 1.5. The difference can then be ascribed to the porosity. 

The results presented in this paper may appear paradoxical. It has been shown 
that the traditional linear Q is essentially a Voigt viscosity but with nonphysical 
viscosity coefficients proportional to the spatial difference interval. It has also been 
demonstrated that the presence of these terms ensures that the late time pulse 
amplitude follows a viscous decay law. If this is so, then how can the numerical 
solutions obtained from the traditional linear Q finite difference programs ever 
converge to the asymptotic solutions for purely elastic response ? Obviously, by 
making the difference interval smaller one reduces the artificial viscosity coefficients 
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proportionately, but this will not affect the asymptotic decay rate since it is 
independent of the magnitude of the viscosity coefficients. No matter how small 
one makes the difference interval there is still a finite viscosity term in the equations. 

This paradox can be resolved by considering a simple example. In one spatial 
dimension the planar response of a Voigt solid is governed by Eq. (25). The 
Green's function for a source at the origin is obtained by solving Eq. (25) with a 
source at the origin having a delta function time dependence. The solution for the 
Green's function is 

G(x, t; O, t') = ~ v ~  exp _~a  [ ~  (r -- r ') 2 ] (40) 

where A0 is a constant and r is the retarded time. The spatial variable x has been 
used instead of r since planar rather than spherical geometry is being considered. 
The response for any kind of time dependence of the source ~bo(r' ) is then given by 
convolution with the Green's function 

r t) = Ao ~ j oo 
~ x x  _o~ ~b~ exp[ - f l ( r  - .,)2] dr', (41) 

where 
/~ = ~/(2vx).  

To make the example as simple as possible consider a rectangular time pulse of 
width 2a. Then the solution is 

~b(x, t )= ~xxA~ f,+a Ao f,,+a,v~ exp(--/3~ :2) d~: = ~ exp(--y ~) dy. (42) 
T- -O ,  ~r vrp (r-a)~/~ 

Then, at the center of the pulse, the amplitude is 

~ a v #  
~bo = A1 exp(--y 2) dy. 

-aVg 

For large/3 corresponding to small x this reduces to 

2 v  r o - "  _ _ _  

~bo(x) ---- As tl --  2vx ] \  

(43) 

vX312 
a%za + ..-)], (44) 

and for small fl corresponding to large x 

Co(x) = A3 [a ~/c~3 
f i x  

a 3 /, ~3 ]3/2 
3 ~ x l  +'"]" (45) 

58x/I2/2-4 
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If  the material response were purely elastic the rectangular pulse would simply 
maintain its shape and amplitude. In the visco-elastic case the pulse maintains its 
shape and amplitude during the initial stages of travel, except for a very slight 
rounding at the edges. Then there is a transition stage in which the pulse changes 
shape and its amplitude begins to decay. Finally, the asymptotic state is reached; 
the pulse shape assumes Gaussian form and the amplitude becomes inversely 
proportional to the square root of the range. How these different stages arise is 
easily understood by referring to the convolution integral Eq. (41). For short 
ranges the width of the Gaussian Green's function Eq. (40) is very narrow in 
comparison with the width of the rectangular pulse. Convolution with the 
rectangular pulse simply reproduces the rectangular pulse. When the range is 
sufficiently great the width of the Green's function becomes comparable to the 
width of the initial rectangular source pulse. Convolution then strongly alters the 
shape and amplitude of the initial pulse. Finally, at very great range the Gaussian 
Green's function becomes much wider than the initial rectangular pulse. Convo- 
lution of the two functions then simply reproduces the Green's function except for 
change of amplitude scale. 

The viscosity v appears in the solution Eq. (40) as a scale factor multiplying the 
range x. Thus, the effect of reducing the viscosity is to delay the onset of the 
asymptotic stage. By making the viscosity vanishingly small, the range at which the 
asymptotic stage begins can be made to approach infinity. This behavior explains 
why solutions obtained from numerical calculations with the traditional linear Q 
will converge to elastic solutions in the limit of vanishingly small difference interval. 
Unfortunately, practical computer calculations must be made with a finite mesh 
interval, usually large, perhaps no smaller than about 5 ~ the width of the purely 
elastic disturbance. In decaying wave calculations, the transition to the asymptotic 
stage occurs well within the ranges of interest for practical choices of zoning. 

Finally, it should be noted that the linear Q will affect the calculation of other 
types of decaying waves specific to solids. In particular, solids can support Rayleigh 
waves that propagate along a free surface rather than through the bulk of the solid. 
In the case of purely elastic behavior and a finite size source, these waves have an 
amplitude proportional to the inverse square root of the range; however, the 
traditional linear Q programs calculate amplitudes that are observed to be 
proportional to the inverse first power of the range. The results that have been 
obtained for surface waves will be published in a separate paper or made available 
in the form of a laboratory report. 
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